Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Commun Biol ; 6(1): 1258, 2023 12 12.
Article En | MEDLINE | ID: mdl-38086992

The mechanisms leading to changes in mesoscale chromatin organization during cellular aging are unknown. Here, we used transcriptional activator-like effectors, RNA-seq and superresolution analysis to determine the effects of genotoxic stress on oocyte chromatin structure. Major satellites are organized into tightly packed globular structures that coalesce into chromocenters and dynamically associate with the nucleolus. Acute irradiation significantly enhanced chromocenter mobility in transcriptionally inactive oocytes. In transcriptionally active oocytes, irradiation induced a striking unfolding of satellite chromatin fibers and enhanced the expression of transcripts required for protection from oxidative stress (Fermt1, Smg1), recovery from DNA damage (Tlk2, Rad54l) and regulation of heterochromatin assembly (Zfp296, Ski-oncogene). Non-irradiated, senescent oocytes exhibit not only high chromocenter mobility and satellite distension but also a high frequency of extra chromosomal satellite DNA. Notably, analysis of biological aging using an oocyte-specific RNA clock revealed cellular communication, posttranslational protein modifications, chromatin and histone dynamics as the top cellular processes that are dysregulated in both senescent and irradiated oocytes. Our results indicate that unfolding of heterochromatin fibers following acute genotoxic stress or cellular aging induced the formation of distended satellites and that abnormal chromatin structure together with increased chromocenter mobility leads to chromosome instability in senescent oocytes.


Heterochromatin , Oocytes , Animals , Heterochromatin/genetics , Heterochromatin/metabolism , Chromatin/genetics , Chromatin/metabolism , Histones/metabolism , Chromatin Assembly and Disassembly , Mammals/genetics
2.
Open Biol ; 13(11): 230133, 2023 Nov.
Article En | MEDLINE | ID: mdl-37935356

In somatic cells, mitotic transcription of major satellite non-coding RNAs is tightly regulated and essential for heterochromatin formation and the maintenance of genome integrity. We recently demonstrated that major satellite transcripts are expressed, and chromatin-bound during mouse oocyte meiosis. Pericentric satellite RNAs are also expressed in human oocytes. However, the specific biological function(s) during oocyte meiosis remain to be established. Here, we use validated locked nucleic acid gapmers for major satellite RNA depletion followed by live cell imaging, and superresolution analysis to determine the role of pericentric non-coding RNAs during female meiosis. Depletion of satellite RNA induces mesoscale changes in pericentric heterochromatin structure leading to chromosome instability, kinetochore attachment errors and abnormal chromosome alignment. Chromosome misalignment is associated with spindle defects, microtubule instability and, unexpectedly, loss of acentriolar microtubule organizing centre (aMTOC) tethering to spindle poles. Pericentrin fragmentation and failure to assemble ring-like aMTOCs with loss of associated polo-like kinase 1 provide critical insight into the mechanisms leading to impaired spindle pole integrity. Inhibition of transcription or RNA splicing phenocopies the chromosome alignment errors and spindle defects, suggesting that pericentric transcription during oocyte meiosis is required to regulate heterochromatin structure, chromosome segregation and maintenance of spindle organization.


Heterochromatin , Spindle Apparatus , Mice , Female , Humans , Animals , Spindle Apparatus/genetics , Spindle Poles , Meiosis/genetics , Oocytes , Chromosomal Instability , RNA, Satellite , Chromosome Segregation
3.
Cells ; 11(20)2022 10 14.
Article En | MEDLINE | ID: mdl-36291100

The endocrine disrupting activity of bisphenol compounds is well documented, but less is known regarding their impact on cell division and early embryo formation. Here, we tested the effects of acute in vitro exposure to bisphenol A (BPA) and its common substitute, bisphenol F (BPF), during critical stages of mouse pre-implantation embryo development, including the first mitotic division, cell polarization, as well as morula and blastocyst formation. Timing of initial cleavage was determined by live-cell imaging, while subsequent divisions, cytoskeletal organization and lineage marker labeling were assessed by high-resolution fluorescence microscopy. Our analysis reveals that brief culture with BPA or BPF impeded cell division and disrupted embryo development at all stages tested. Surprisingly, BPF was more detrimental to the early embryo than BPA. Notably, poor embryo development was associated with cytoskeletal disruptions of the actomyosin network, apical domain formation during cell polarization, actin ring zippering for embryo sealing and altered cell lineage marker profiles. These results underscore that bisphenols can disrupt cytoskeletal integrity and remodeling that is vital for early embryo development and raise concerns regarding the use of BPF as a 'safe' BPA substitute.


Benzhydryl Compounds , Blastocyst , Cytoskeleton , Phenols , Animals , Mice , Actins/metabolism , Actomyosin/metabolism , Blastocyst/drug effects , Blastocyst/ultrastructure , Benzhydryl Compounds/toxicity , Phenols/toxicity , Cytoskeleton/drug effects , Cytoskeleton/ultrastructure
4.
Epigenetics Chromatin ; 14(1): 58, 2021 12 27.
Article En | MEDLINE | ID: mdl-34955095

Directed differentiation of mouse embryonic stem cells (mESCs) or induced pluripotent stem cells (iPSCs) provides powerful models to dissect the molecular mechanisms leading to the formation of specific cell lineages. Treatment with histone deacetylase inhibitors can significantly enhance the efficiency of directed differentiation. However, the mechanisms are not well understood. Here, we use CUT&RUN in combination with ATAC-seq to determine changes in both histone modifications and genome-wide chromatin accessibility following valproic acid (VPA) exposure. VPA induced a significant increase in global histone H3 acetylation (H3K56ac), a core histone modification affecting nucleosome stability, as well as enrichment at loci associated with cytoskeletal organization and cellular morphogenesis. In addition, VPA altered the levels of linker histone H1 subtypes and the total histone H1/nucleosome ratio indicative of initial differentiation events. Notably, ATAC-seq analysis revealed changes in chromatin accessibility of genes involved in regulation of CDK serine/threonine kinase activity and DNA duplex unwinding. Importantly, changes in chromatin accessibility were evident at several key genomic loci, such as the pluripotency factor Lefty, cardiac muscle troponin Tnnt2, and the homeodomain factor Hopx, which play critical roles in cardiomyocyte differentiation. Massive parallel transcription factor (TF) footprinting also indicates an increased occupancy of TFs involved in differentiation toward mesoderm and endoderm lineages and a loss of footprints of POU5F1/SOX2 pluripotency factors following VPA treatment. Our results provide the first genome-wide analysis of the chromatin landscape following VPA-induced differentiation in mESCs and provide new mechanistic insight into the intricate molecular processes that govern departure from pluripotency and early lineage commitment.


Chromatin , Histones , Acetylation , Animals , Cell Differentiation , Embryonic Stem Cells/metabolism , Histones/metabolism , Mice , Valproic Acid/toxicity
5.
J Cell Sci ; 134(14)2021 07 15.
Article En | MEDLINE | ID: mdl-34152366

Oocyte-specific knockdown of pericentrin (PCNT) in transgenic (Tg) mice disrupts acentriolar microtubule-organizing center (aMTOC) formation, leading to spindle instability and error-prone meiotic division. Here, we show that PCNT-depleted oocytes lack phosphorylated Aurora A (pAURKA) at spindle poles, while overall levels are unaltered. To test aMTOC-associated AURKA function, metaphase II (MII) control (WT) and Tg oocytes were briefly exposed to a specific AURKA inhibitor (MLN8237). Similar defects were observed in Tg and MLN8237-treated WT oocytes, including altered spindle structure, increased chromosome misalignment and impaired microtubule regrowth. Yet, AURKA inhibition had a limited effect on Tg oocytes, revealing a critical role for aMTOC-associated AURKA in regulating spindle stability. Notably, spindle instability was associated with disrupted γ-tubulin and lack of the liquid-like meiotic spindle domain (LISD) in Tg oocytes. Analysis of this Tg model provides the first evidence that LISD assembly depends expressly on aMTOC-associated AURKA, and that Ran-mediated spindle formation ensues without the LISD. These data support that loss of aMTOC-associated AURKA and failure of LISD assembly contribute to error-prone meiotic division in PCNT-depleted oocytes, underscoring the essential role of aMTOCs for spindle stability.


Aurora Kinase A , Microtubule-Organizing Center , Spindle Apparatus , Animals , Aurora Kinase A/genetics , Meiosis , Mice , Oocytes , Spindle Apparatus/genetics , Spindle Poles/genetics
6.
J Cell Biol ; 219(11)2020 11 02.
Article En | MEDLINE | ID: mdl-32870972

The polycomb group protein CBX2 is an important epigenetic reader involved in cell proliferation and differentiation. While CBX2 overexpression occurs in a wide range of human tumors, targeted deletion results in homeotic transformation, proliferative defects, and premature senescence. However, its cellular function(s) and whether it plays a role in maintenance of genome stability remain to be determined. Here, we demonstrate that loss of CBX2 in mouse fibroblasts induces abnormal large-scale chromatin structure and chromosome instability. Integrative transcriptome analysis and ATAC-seq revealed a significant dysregulation of transcripts involved in DNA repair, chromocenter formation, and tumorigenesis in addition to changes in chromatin accessibility of genes involved in lateral sclerosis, basal transcription factors, and folate metabolism. Notably, Cbx2-/- cells exhibit prominent decondensation of satellite DNA sequences at metaphase and increased sister chromatid recombination events leading to rampant chromosome instability. The presence of extensive centromere and telomere defects suggests a prominent role for CBX2 in heterochromatin homeostasis and the regulation of nuclear architecture.


Cell Transformation, Neoplastic/pathology , Cellular Senescence , Chromosome Aberrations , Fibroblasts/pathology , Genomic Instability , Polycomb Repressive Complex 1/physiology , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Centromere , Chromatin , Female , Fibroblasts/metabolism , Male , Mice , Mice, Knockout , Transcriptome
7.
Nat Commun ; 11(1): 4486, 2020 09 08.
Article En | MEDLINE | ID: mdl-32900989

Centromeres are epigenetically determined nuclear domains strictly required for chromosome segregation and genome stability. However, the mechanisms regulating centromere and kinetochore chromatin modifications are not known. Here, we demonstrate that LSH is enriched at meiotic kinetochores and its targeted deletion induces centromere instability and abnormal chromosome segregation. Superresolution chromatin analysis resolves LSH at the inner centromere and kinetochores during oocyte meiosis. LSH knockout pachytene oocytes exhibit reduced HDAC2 and DNMT-1. Notably, mutant oocytes show a striking increase in histone H3 phosphorylation at threonine 3 (H3T3ph) and accumulation of major satellite transcripts in both prophase-I and metaphase-I chromosomes. Moreover, knockout oocytes exhibit centromere fusions, ectopic kinetochore formation and abnormal exchange of chromatin fibers between paired bivalents and asynapsed chromosomes. Our results indicate that loss of LSH affects the levels and chromosomal localization of H3T3ph and provide evidence that, by maintaining transcriptionally repressive heterochromatin, LSH may be essential to prevent deleterious meiotic recombination events at repetitive centromeric sequences.


DNA Helicases/metabolism , Meiosis/physiology , Oocytes/cytology , Oocytes/metabolism , Animals , Centromere/genetics , Centromere/metabolism , DNA Helicases/deficiency , DNA Helicases/genetics , Female , Histones/metabolism , Kinetochores/metabolism , Male , Meiosis/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Transcription, Genetic
8.
Reproduction ; 159(3): 261-274, 2020 03.
Article En | MEDLINE | ID: mdl-31895686

Acentriolar microtubule-organizing centers (aMTOCs) play a critical role in stable meiotic spindle assembly in oocytes, necessary for accurate chromosome segregation. Yet, there is a limited understanding of the essential regulatory components of these unique MTOCs. In somatic cells, CEP215 (Centrosomal Protein 215) serves as an important regulator of centrosome maturation and spindle organization. Here, we assessed whether it has a similar function in mouse oocytes. CEP215 was detected in oocyte lysates and specifically localized to aMTOCs throughout the progression of meiosis in a pericentrin-dependent manner. Super-resolution microscopy revealed CEP215 co-localization with pericentrin and a unique pore/ring-like structural organization of aMTOCs. Interestingly, inhibition of Aurora Kinase A in either MI or MII-stage oocytes resulted in a striking loss of the ring-like aMTOC organization and pronounced CEP215 clustering at spindle poles, as well as shorter spindles with highly focused poles. In vitro siRNA-mediated transcript knockdown effectively reduced CEP215 in approximately 85% of the oocytes. Maturation rates to MII were similar in the Cep215 siRNA and injected controls; however, a high percentage (~40%) of the Cep215-knockdown oocytes showed notable variations in spindle pole focusing. Surprisingly, pericentrin and γ-tubulin localization and fluorescence intensity at aMTOCs were unaltered in knockdown oocytes, contrasting with mitotic cells where CEP215 depletion reduced γ-tubulin at centrosomes. Our results demonstrate that CEP215 is a functional component of oocyte aMTOCs and participates in the regulation of meiotic spindle pole focusing. Moreover, these studies reveal a vital role for Aurora Kinase A activity in the maintenance of aMTOC organization in oocytes.


Aurora Kinase A/metabolism , Cell Cycle Proteins/metabolism , Meiosis , Microtubule-Organizing Center/metabolism , Oocytes/physiology , Animals , Antigens/metabolism , Female , Male , Mice, Inbred C57BL , Tubulin/metabolism
9.
Reproduction ; 150(4): 297-310, 2015 Oct.
Article En | MEDLINE | ID: mdl-26224097

Endometriosis is associated with infertility and debilitating chronic pain. Abnormal epigenetic modifications in the human endometrium have recently been implicated in the pathogenesis of this condition. However, whether an altered epigenetic landscape contributes to pathological changes in the ovary is unknown. Using an established baboon endometriosis model, early-, and late-stage epigenetic changes in the ovary were investigated. Transcript profiling of key chromatin-modifying enzymes using pathway-focused PCR arrays on ovarian tissue from healthy control animals and at 3 and 15 months of endometriosis revealed dramatic changes in gene expression in a disease duration-dependent manner. Ingenuity Pathway Analysis indicated that transcripts for chromatin-remodeling enzymes associated with reproductive system disease and cancer development were abnormally regulated, most prominently the arginine methyltransferases CARM1, PRMT2, and PRMT8. Downregulation of CARM1 protein expression was also detected in the ovary, fully-grown oocytes and eutopic endometrium following 15 months of endometriosis. Sodium bisulfite sequencing revealed DNA hypermethylation within the PRMT8 promoter, suggesting that deregulated CpG methylation may play a role in transcriptional repression of this gene. These results demonstrate that endometriosis is associated with changes of epigenetic profiles in the primate ovary and suggest that arginine methyltransferases play a prominent role in mediating the ovarian response to endometriosis. Owing to the critical role of CARM1 in nuclear receptor-mediated transcription and maintenance of pluripotency in the cleavage stage embryo, our results suggest that epigenetic alterations in the ovary may have functional consequences for oocyte quality and the etiology of infertility associated with endometriosis.


Endometriosis/genetics , Endometriosis/physiopathology , Epigenesis, Genetic/genetics , Intracellular Signaling Peptides and Proteins/genetics , Ovary/enzymology , Papio , Protein-Arginine N-Methyltransferases/genetics , Animals , Chromatin/metabolism , Conserved Sequence , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Endometrium/enzymology , Female , Heterochromatin/genetics , Humans , Infertility/genetics , Isoenzymes/genetics , Oocytes/enzymology , Pregnancy , Transcriptional Activation
10.
Development ; 142(10): 1806-17, 2015 May 15.
Article En | MEDLINE | ID: mdl-25926359

A striking proportion of human cleavage-stage embryos exhibit chromosome instability (CIN). Notably, until now, no experimental model has been described to determine the origin and mechanisms of complex chromosomal rearrangements. Here, we examined mouse embryos deficient for the chromatin remodeling protein ATRX to determine the cellular mechanisms activated in response to CIN. We demonstrate that ATRX is required for silencing of major satellite transcripts in the maternal genome, where it confers epigenetic asymmetry to pericentric heterochromatin during the transition to the first mitosis. This stage is also characterized by a striking kinetochore size asymmetry established by differences in CENP-C protein between the parental genomes. Loss of ATRX results in increased centromeric mitotic recombination, a high frequency of sister chromatid exchanges and double strand DNA breaks, indicating the formation of mitotic recombination break points. ATRX-deficient embryos exhibit a twofold increase in transcripts for aurora kinase B, the centromeric cohesin ESCO2, DNMT1, the ubiquitin-ligase (DZIP3) and the histone methyl transferase (EHMT1). Thus, loss of ATRX activates a pathway that integrates epigenetic modifications and DNA repair in response to chromosome breaks. These results reveal the cellular response of the cleavage-stage embryo to CIN and uncover a mechanism by which centromeric fission induces the formation of large-scale chromosomal rearrangements. Our results have important implications to determine the epigenetic origins of CIN that lead to congenital birth defects and early pregnancy loss, as well as the mechanisms involved in the oocyte to embryo transition.


DNA Helicases/metabolism , Nuclear Proteins/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Centromere/genetics , Chromatin Assembly and Disassembly/genetics , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Helicases/genetics , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , Heterochromatin/genetics , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Kinetochores/metabolism , Meiosis/genetics , Meiosis/physiology , Mice , Nuclear Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , X-linked Nuclear Protein
11.
J Cell Biol ; 208(1): 53-69, 2015 Jan 05.
Article En | MEDLINE | ID: mdl-25547156

Postmeiotic gene expression is essential for development and maturation of sperm and eggs. We report that the dual bromodomain-containing protein BRWD1, which is essential for both male and female fertility, promotes haploid spermatid-specific transcription but has distinct roles in oocyte meiotic progression. Brwd1 deficiency caused down-regulation of ∼300 mostly spermatid-specific transcripts in testis, including nearly complete elimination of those encoding the protamines and transition proteins, but was not associated with global epigenetic changes in chromatin, which suggests that BRWD1 acts selectively. In females, Brwd1 ablation caused severe chromosome condensation and structural defects associated with abnormal telomere structure but only minor changes in gene expression at the germinal vesicle stage, including more than twofold overexpression of the histone methyltransferase MLL5 and LINE-1 elements transposons. Thus, loss of BRWD1 function interferes with the completion of oogenesis and spermatogenesis through sexually dimorphic mechanisms: it is essential in females for epigenetic control of meiotic chromosome stability and in males for haploid gene transcription during postmeiotic sperm differentiation.


Chromosomal Instability , Fertility , Histone Acetyltransferases/metabolism , Meiosis , Oogenesis , Spermatids/metabolism , Spermatogenesis , Transcription, Genetic , Animals , Cells, Cultured , Cluster Analysis , Epigenesis, Genetic , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Genotype , Haploidy , Histone Acetyltransferases/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Long Interspersed Nucleotide Elements , Male , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Phenotype , Sex Characteristics , Sex Factors , Transfection
13.
Results Probl Cell Differ ; 55: 45-68, 2012.
Article En | MEDLINE | ID: mdl-22918800

Differentiation of chromatin structure and function during oogenesis is essential to confer the mammalian oocyte with meiotic and developmental potential. Errors in chromosome segregation during female meiosis and subsequent transmission of an abnormal chromosome complement (aneuploidy) to the early conceptus are one of the leading causes of pregnancy loss in women. The chromatin remodeling protein ATRX (α-thalassemia mental retardation X-linked) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres during meiosis. In mammalian oocytes, ATRX binds to centromeric heterochromatin domains where it is required for accurate chromosome segregation. Loss of ATRX function induces abnormal meiotic chromosome morphology, reduces histone H3 phosphorylation, and promotes a high incidence of aneuploidy associated with severely reduced fertility. The presence of centromeric breaks during the transition to the first mitosis in the early embryo indicates that the role of ATRX in chromosome segregation is mediated through an epigenetic mechanism involving the maintenance of chromatin modifications associated with pericentric heterochromatin (PCH) formation and chromosome condensation. This is consistent with the existence of a potential molecular link between centromeric and PCH in the epigenetic control of centromere function and maintenance of chromosome stability in mammalian oocytes. Dissecting the molecular mechanisms of ATRX function during meiosis will have important clinical implications towards uncovering the epigenetic factors contributing to the onset of aneuploidy in the human oocyte.


Chromosome Segregation/physiology , Chromosomes, Mammalian/metabolism , DNA Helicases/metabolism , Heterochromatin/metabolism , Meiosis/physiology , Nuclear Proteins/metabolism , Oocytes/metabolism , Animals , Centromere/metabolism , Epigenesis, Genetic/physiology , Female , Histones/metabolism , Humans , Mice , Oocytes/cytology , Phosphorylation/physiology , Pregnancy , X-linked Nuclear Protein
14.
Int J Dev Biol ; 56(10-12): 889-99, 2012.
Article En | MEDLINE | ID: mdl-23417411

Histone acetylation regulates higher-order chromatin structure and function and is critical for the control of gene expression. Histone deacetylase inhibitors (HDACi) are currently under investigation as novel cancer therapeutic drugs. Here, we show that female germ cells are extremely susceptible to chromatin changes induced by HDACi. Our results indicate that exposure to trichostatin A (TSA) at nanomolar levels interferes with major chromatin remodeling events in the mammalian oocyte leading to chromosome instability. High resolution analysis of chromatin structure and live-cell imaging revealed a striking euchromatin decondensation associated with histone H4 hyperacetylation following exposure to 15 nM TSA in >90% of pre-ovulatory oocytes. Dynamic changes in large-scale chromatin structure were detected after 2 h of exposure and result in the formation of misaligned chromosomes in >75% (P<0.05) of in vitro matured oocytes showing chromosome lagging as well as abnormal sister chromatid separation at anaphase I. Abnormal axial chromatid condensation during meiosis results in the formation of elongated chromosomes exhibiting hyperacetylation of histone H4 at lysine 5 and lysine 16 at interstitial chromosome segments, but not pericentric heterochromatin, while highly decondensed bivalents exhibit prominent histone H3 phosphorylation at centromeric domains. Notably, no changes were observed in the chromosomal localization of the condensin protein SMC4. These results indicate that HDAC activity is required for proper chromosome condensation in the mammalian oocyte and that HDACi may induce abnormal chromosome segregation by interfering with both chromosome-microtubule interactions, as well as sister chromatid separation. Thus, HDACi, proposed for cancer therapy, may disrupt the epigenetic status of female germ cells, predisposing oocytes to aneuploidy at previously unrecognized low doses.


Chromatin Assembly and Disassembly , Histones/metabolism , Meiosis , Oocytes/metabolism , Acetylation , Animals , Blotting, Western , Chromatids/genetics , Chromatids/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromosome Segregation/drug effects , Dose-Response Relationship, Drug , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histones/genetics , Hydroxamic Acids/pharmacology , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Microscopy, Fluorescence , Oocytes/cytology , Oocytes/drug effects , Oogenesis/drug effects , Time-Lapse Imaging
15.
Genes (Basel) ; 2(1): 59-80, 2011.
Article En | MEDLINE | ID: mdl-22200029

Polycomb group proteins (PcG) are major epigenetic regulators, essential for establishing heritable expression patterns of developmental control genes. The mouse PcG family member M33/Cbx2 (Chromobox homolog protein 2) is a component of the Polycomb-Repressive Complex 1 (PRC1). Targeted deletion of Cbx2/M33 in mice results in homeotic transformations of the axial skeleton, growth retardation and male-to-female sex reversal. In this study, we tested whether Cbx2 is involved in the control of chromatin remodeling processes during meiosis. Our analysis revealed sex reversal in 28.6% of XY(-/-) embryos, in which a hypoplastic testis and a contralateral ovary were observed in close proximity to the kidney, while the remaining male mutant fetuses exhibited bilateral testicular hypoplasia. Notably, germ cells recovered from Cbx2((XY-/-)) testes on day 18.5 of fetal development exhibited premature meiosis onset with synaptonemal complex formation suggesting a role for Cbx2 in the control of meiotic entry in male germ cells. Mutant females exhibited small ovaries with significant germ cell loss and a high proportion of oocytes with abnormal synapsis and non-homologous interactions at the pachytene stage as well as formation of univalents at diplotene. These defects were associated with failure to resolve DNA double strand breaks marked by persistent γH2AX and Rad51 foci at the late pachytene stage. Importantly, two factors required for meiotic silencing of asynapsed chromatin, ubiquitinated histone H2A (ubH2A) and the chromatin remodeling protein BRCA1, co-localized with fully synapsed chromosome axes in the majority of Cbx2((-/-)) oocytes. These results provide novel evidence that Cbx2 plays a critical and previously unrecognized role in germ cell viability, meiosis onset and homologous chromosome synapsis in the mammalian germline.

16.
Reproduction ; 142(2): 221-34, 2011 Aug.
Article En | MEDLINE | ID: mdl-21653732

Functional differentiation of chromatin structure is essential for the control of gene expression, nuclear architecture, and chromosome stability. Compelling evidence indicates that alterations in chromatin remodeling proteins play an important role in the pathogenesis of human disease. Among these, α-thalassemia mental retardation X-linked protein (ATRX) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres and telomeres as well as facultative heterochromatin on the murine inactive X chromosome. Mutations in human ATRX result in an X-linked neurodevelopmental condition with various degrees of gonadal dysgenesis (ATRX syndrome). Patients with ATRX syndrome may exhibit skewed X chromosome inactivation (XCI) patterns, and ATRX-deficient mice exhibit abnormal imprinted XCI in the trophoblast cell line. Non-random or skewed XCI can potentially affect both the onset and severity of X-linked disease. Notably, failure to establish epigenetic modifications associated with the inactive X chromosome (Xi) results in several conditions that exhibit genomic and chromosome instability such as fragile X syndrome as well as cancer development. Insight into the molecular mechanisms of ATRX function and its interacting partners in different tissues will no doubt contribute to our understanding of the pathogenesis of ATRX syndrome as well as the epigenetic origins of aneuploidy. In turn, this knowledge will be essential for the identification of novel drug targets and diagnostic tools for cancer progression as well as the therapeutic management of global epigenetic changes commonly associated with malignant neoplastic transformation.


Chromatin/chemistry , Chromatin/metabolism , Chromosomal Instability , DNA Helicases/physiology , Genetic Diseases, X-Linked/metabolism , Nuclear Proteins/physiology , Animals , Chromatin Assembly and Disassembly , Disease Progression , Epigenesis, Genetic , Female , Fragile X Syndrome/metabolism , Fragile X Syndrome/physiopathology , Genetic Diseases, X-Linked/physiopathology , Heterochromatin/chemistry , Heterochromatin/metabolism , Humans , Male , Mental Retardation, X-Linked/metabolism , Mental Retardation, X-Linked/physiopathology , X Chromosome Inactivation , X-linked Nuclear Protein , alpha-Thalassemia/metabolism , alpha-Thalassemia/physiopathology
17.
Biol Reprod ; 84(6): 1235-41, 2011 Jun.
Article En | MEDLINE | ID: mdl-21349825

Lymphoid-specific helicase (HELLS; also known as LSH) is a member of the SNF2 family of chromatin remodeling proteins. Because Hells-null mice die at birth, a phenotype in male meiosis cannot be studied in these animals. Allografting of testis tissue from Hells(-/-) to wild-type mice was employed to study postnatal germ cell differentiation. Testes harvested at Day 18.5 of gestation from Hells(-/-), Hells(+/-), and Hells(+/+) mice were grafted ectopically to immunodeficient mice. Bromodeoxyuridine incorporation at 1 wk postgrafting revealed fewer dividing germ cells in grafts from Hells(-/-) than from Hells(+/+) mice. Whereas spermatogenesis proceeded through meiosis with round spermatids in grafts from Hells heterozygote and wild-type donor testes, spermatogenesis arrested at stage IV, and midpachytene spermatocytes were the most advanced germ cell type in grafts from Hells(-/-) mice at 4, 6, and 8 wk after grafting. Analysis of meiotic configurations at 22 days posttransplantation revealed an increase in Hells(-/-) spermatocytes with abnormal chromosome synapsis. These results indicate that in the absence of HELLS, proliferation of spermatogonia is reduced and germ cell differentiation arrested at the midpachytene stage, implicating an essential role for HELLS during male meiosis. This study highlights the utility of testis tissue grafting to study spermatogenesis in animal models that cannot reach sexual maturity.


DNA Helicases/metabolism , Meiosis , Spermatocytes/cytology , Spermatocytes/metabolism , Animals , DNA Helicases/genetics , Gene Expression Regulation, Enzymologic , Male , Mice , Spermatogenesis/physiology
18.
Chromosoma ; 120(3): 227-44, 2011 Jun.
Article En | MEDLINE | ID: mdl-21274552

Pairing of the sex chromosomes during mammalian meiosis is characterized by the formation of a unique heterochromatin structure at the XY body. The mechanisms underlying the formation of this nuclear domain are reportedly highly conserved from marsupials to mammals. In this study, we demonstrate that in contrast to all eutherian species studied to date, partial synapsis of the heterologous sex chromosomes during pachytene stage in the horse is not associated with the formation of a typical macrochromatin domain at the XY body. While phosphorylated histone H2AX (γH2AX) and macroH2A1.2 are present as a diffuse signal over the entire macrochromatin domain in mouse pachytene spermatocytes, γH2AX, macroH2A1.2, and the cohesin subunit SMC3 are preferentially enriched at meiotic sex chromosome cores in equine spermatocytes. Moreover, although several histone modifications associated with this nuclear domain in the mouse such as H3K4me2 and ubH2A are conspicuously absent in the equine XY body, prominent RNA polymerase II foci persist at the sex chromosomes. Thus, the localization of key marker proteins and histone modifications associated with the XY body in the horse differs significantly from all other mammalian systems described. These results demonstrate that the epigenetic landscape and heterochromatinization of the equine XY body might be regulated by alternative mechanisms and that some features of XY body formation may be evolutionary divergent in the domestic horse. We propose equine spermatogenesis as a unique model system for the study of the regulatory networks leading to the epigenetic control of gene expression during XY body formation.


Chromatin/chemistry , Chromosome Pairing , Horses/genetics , Sex Chromosomes/genetics , Spermatogenesis/genetics , Animals , Chromosomal Proteins, Non-Histone/metabolism , Epigenomics , Heterochromatin/genetics , Histones/genetics , Mice , Miosis/genetics , Pachytene Stage/genetics
19.
PLoS Genet ; 6(9): e1001137, 2010 Sep 23.
Article En | MEDLINE | ID: mdl-20885787

The α-thalassemia/mental retardation X-linked protein (ATRX) is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the role of ATRX in the functional differentiation of chromatin structure during meiosis is not known. To test ATRX function in the germ line, we developed an oocyte-specific transgenic RNAi knockdown mouse model. Our results demonstrate that ATRX is required for heterochromatin formation and maintenance of chromosome stability during meiosis. During prophase I arrest, ATRX is necessary to recruit the transcriptional regulator DAXX (death domain associated protein) to pericentric heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes exhibit abnormal chromosome morphology associated with reduced phosphorylation of histone 3 at serine 10 as well as chromosome segregation defects leading to aneuploidy and severely reduced fertility. Notably, a large proportion of ATRX-depleted oocytes and 1-cell stage embryos exhibit chromosome fragments and centromeric DNA-containing micronuclei. Our results provide novel evidence indicating that ATRX is required for centromere stability and the epigenetic control of heterochromatin function during meiosis and the transition to the first mitosis.


Aneuploidy , Blastocyst/metabolism , Centromere/metabolism , Chromosomal Instability/genetics , DNA Helicases/deficiency , Nuclear Proteins/deficiency , Oocytes/metabolism , Animals , Blastocyst/cytology , Carrier Proteins/metabolism , Chromosome Segregation/genetics , Chromosomes, Mammalian/metabolism , Co-Repressor Proteins , DNA Helicases/genetics , DNA Helicases/metabolism , Female , Fertility/genetics , Gene Knockdown Techniques , Heterochromatin/metabolism , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Mitosis/genetics , Models, Animal , Molecular Chaperones , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oocytes/cytology , Organ Specificity/genetics , Phosphorylation , RNA Interference , X-linked Nuclear Protein
20.
Dev Biol ; 331(2): 326-38, 2009 Jul 15.
Article En | MEDLINE | ID: mdl-19463809

In spite of the impact of aneuploidy on human health little is known concerning the molecular mechanisms involved in the formation of structural or numerical chromosome abnormalities during meiosis. Here, we provide novel evidence indicating that lack of PARP-1 function during oogenesis predisposes the female gamete to genome instability. During prophase I of meiosis, a high proportion of Parp-1((-/-)) mouse oocytes exhibit a spectrum of meiotic defects including incomplete homologous chromosome synapsis or persistent histone H2AX phosphorylation in fully synapsed chromosomes at the late pachytene stage. Moreover, the X chromosome bivalent is also prone to exhibit persistent double strand DNA breaks (DSBs). In striking contrast, such defects were not detected in mutant pachytene spermatocytes. In fully-grown wild type oocytes at the germinal vesicle stage, PARP-1 protein associates with nuclear speckles and upon meiotic resumption, undergoes a striking re-localization towards spindle poles as well as pericentric heterochromatin domains at the metaphase II stage. Notably, a high proportion of in vivo matured Parp-1((-/-)) oocytes show lack of recruitment of the kinetochore-associated protein BUB3 to centromeric domains and fail to maintain metaphase II arrest. Defects in chromatin modifications in the form of persistent histone H2AX phosphorylation during prophase I of meiosis and deficient sister chromatid cohesion during metaphase II predispose mutant oocytes to premature anaphase II onset upon removal from the oviductal environment. Our results indicate that PARP-1 plays a critical role in the maintenance of chromosome stability at key stages of meiosis in the female germ line. Moreover, in the metaphase II stage oocyte PARP-1 is required for the regulation of centromere structure and function through a mechanism that involves the recruitment of BUB3 protein to centromeric domains.


Centromere/physiology , Chromosome Pairing , Histones/metabolism , Oocytes/physiology , Poly(ADP-ribose) Polymerases/physiology , Animals , Chromatin/metabolism , Chromosome Aberrations , Epigenesis, Genetic , Female , Meiosis , Mice , Mice, Knockout , Phosphorylation , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/genetics
...